锁: 分布式的锁全局同步,这意味着任何一个时间点不会有两个客户端都拥有相同的锁。
1.可重入锁Shared Reentrant Lock
首先我们先看一个全局可重入的锁( 可以多次获取,不会被阻塞 )。Shared意味着锁是全局可见的,客户端都可以请求锁。Reentrant和JDK的ReentrantLock类似,意味着同一个客户端在拥有锁的同时,可以多次获取,不会被阻塞。
1.可重入锁相关类介绍
它是由类InterProcessMutex来实现。 它的主要方法:
// 构造方法
public InterProcessMutex(CuratorFramework client, String path)
public InterProcessMutex(CuratorFramework client, String path, LockInternalsDriver driver)
// 通过acquire获得锁,并提供超时机制:
public void acquire() throws Exception
public boolean acquire(long time, TimeUnit unit) throws Exception
// 撤销锁
public void makeRevocable(RevocationListener<InterProcessMutex> listener)
public void makeRevocable(final RevocationListener<InterProcessMutex> listener, Executor executor)
错误处理: 还是强烈推荐你使用ConnectionStateListener处理连接状态的改变。当连接LOST时你不再拥有锁。
2.编写示例程序
首先让我们创建一个模拟的共享资源, 这个资源期望只能单线程的访问,否则会有并发问题。
public class FakeLimitedResource
{
private final AtomicBoolean inUse = new AtomicBoolean(false);
// 模拟只能单线程操作的资源
public void use() throws InterruptedException
{
if (!inUse.compareAndSet(false, true))
{
// 在正确使用锁的情况下,此异常不可能抛出
throw new IllegalStateException("Needs to be used by one client at a time");
}
try
{
Thread.sleep((long) (3 * Math.random()));
}
finally
{
inUse.set(false);
}
}
}
然后创建一个ExampleClientThatLocks类,它负责请求锁,使用资源,释放锁这样一个完整的访问过程。
public class ExampleClientThatLocks
{
private final InterProcessMutex lock;
private final FakeLimitedResource resource;
private final String clientName;
public ExampleClientThatLocks(CuratorFramework client, String lockPath, FakeLimitedResource resource, String clientName)
{
this.resource = resource;
this.clientName = clientName;
lock = new InterProcessMutex(client, lockPath);
}
public void doWork(long time, TimeUnit unit) throws Exception
{
if (!lock.acquire(time, unit))
{
throw new IllegalStateException(clientName + " 不能得到互斥锁");
}
try
{
System.out.println(clientName + " 已获取到互斥锁");
resource.use(); // 使用资源
Thread.sleep(1000 * 1);
}
finally
{
System.out.println(clientName + " 释放互斥锁");
lock.release(); // 总是在finally中释放
}
}
}
最后创建主程序来测试:
public class InterProcessMutexExample
{
private static final int QTY = 5;
private static final int REPETITIONS = QTY * 10;
private static final String PATH = "/examples/locks";
public static void main(String[] args) throws Exception
{
final FakeLimitedResource resource = new FakeLimitedResource();
final List<CuratorFramework> clientList = new ArrayList<CuratorFramework>();
for (int i = 0; i < QTY; i++)
{
CuratorFramework client = CuratorFrameworkFactory.newClient("127.0.0.1:2181", new ExponentialBackoffRetry(1000, 3));
client.start();
clientList.add(client);
}
System.out.println("连接初始化完成!");
ExecutorService service = Executors.newFixedThreadPool(QTY);
for (int i = 0; i < QTY; ++i)
{
final int index = i;
Callable<Void> task = new Callable<Void>()
{
@Override
public Void call() throws Exception
{
try
{
final ExampleClientThatLocks example = new ExampleClientThatLocks(clientList.get(index), PATH, resource, "Client " + index);
for (int j = 0; j < REPETITIONS; ++j)
{
example.doWork(10, TimeUnit.SECONDS);
}
}
catch (Throwable e)
{
e.printStackTrace();
}
finally
{
CloseableUtils.closeQuietly(clientList.get(index));
}
return null;
}
};
service.submit(task);
}
service.shutdown();
service.awaitTermination(10, TimeUnit.MINUTES);
System.out.println("OK!");
}
}
代码也很简单,生成5个client,每个client重复执行10次 请求锁--访问资源--释放锁的过程。每个client都在独立的线程中。
结果可以看到,锁是随机的被每个实例排他性的使用。
既然是可重入锁,你可以在一个线程中多次调用acquire,在线程拥有锁时它总是返回true。
注意:你不应该在多个线程中用同一个InterProcessMutex, 你可以在每个线程中都生成一个InterProcessMutex实例,它们的path都一样,这样它们可以共享同一个锁。
3.示例运行结果
运行结果控制台如下:
连接初始化完成!
Client 4 已获取到互斥锁
Client 4 释放互斥锁
Client 3 已获取到互斥锁
Client 3 释放互斥锁
......
Client 2 已获取到互斥锁
Client 2 释放互斥锁
OK!
运行时查看Zookeeper节点信息如下:
2.不可重入锁Shared Lock
这个锁和上面的相比,就是少了Reentrant的功能,也就意味着它不能在同一个线程中重入。 这个类是InterProcessSemaphoreMutex 使用方法和上面的类类似
首先我们将上面的例子修改一下,测试一下它的重入。 修改ExampleClientThatLocks.doWork,连续两次acquire:
public void doWork(long time, TimeUnit unit) throws Exception
{
if (!lock.acquire(time, unit))
{
throw new IllegalStateException(clientName + " 不能得到互斥锁");
}
System.out.println(clientName + " 已获取到互斥锁");
if (!lock.acquire(time, unit))
{
throw new IllegalStateException(clientName + " 不能得到互斥锁");
}
System.out.println(clientName + " 再次获取到互斥锁");
try
{
resource.use(); // 使用资源
Thread.sleep(1000 * 1);
}
finally
{
System.out.println(clientName + " 释放互斥锁");
lock.release(); // 总是在finally中释放
lock.release(); // 获取锁几次 释放锁也要几次
}
}
注意:我们也需要调用release两次。这和JDK的ReentrantLock用法一致。如果少调用一次release,则此线程依然拥有锁。
上面的代码没有问题,我们可以多次调用acquire,后续的acquire也不会阻塞。
但是将上面的InterProcessMutex换成不可重入锁InterProcessSemaphoreMutex,如果再运行上面的代码,结果就会发现线程被阻塞在第二个acquire上,直到超时。也就是此锁不是可重入的。
3.可重入读写锁Shared Reentrant Read Write Lock
类似JDK的ReentrantReadWriteLock。 一个读写锁管理一对相关的锁。一个负责读操作,另外一个负责写操作。读操作在写锁没被使用时可同时由多个进程使用,而写锁在使用时不允许读(阻塞)。
此锁是可重入的。一个拥有写锁的线程可重入读锁,但是读锁却不能进入写锁。 这也意味着写锁可以降级成读锁, 比如请求写锁 --->读锁 ---->释放写锁。从读锁升级成写锁是不行的。
1.可重入读写锁相关类介绍
可重入读写锁 主要由两个类实现: InterProcessReadWriteLock、InterProcessMutex 。 使用时首先创建一个InterProcessReadWriteLock实例,然后再根据你的需求得到读锁或者写锁,读写锁的类型是InterProcessMutex 。
2.编写示例程序
示例程序仍使用上面的FakeLimitedResource、InterProcessMutexExample类
public class ExampleClientReadWriteLocks
{
private final InterProcessReadWriteLock lock;
private final InterProcessMutex readLock;
private final InterProcessMutex writeLock;
private final FakeLimitedResource resource;
private final String clientName;
public ExampleClientReadWriteLocks(CuratorFramework client, String lockPath, FakeLimitedResource resource, String clientName)
{
this.resource = resource;
this.clientName = clientName;
lock = new InterProcessReadWriteLock(client, lockPath);
readLock = lock.readLock();
writeLock = lock.writeLock();
}
public void doWork(long time, TimeUnit unit) throws Exception
{
// 注意只能先得到写锁再得到读锁,不能反过来!!!
if (!writeLock.acquire(time, unit))
{
throw new IllegalStateException(clientName + " 不能得到写锁");
}
System.out.println(clientName + " 已得到写锁");
if (!readLock.acquire(time, unit))
{
throw new IllegalStateException(clientName + " 不能得到读锁");
}
System.out.println(clientName + " 已得到读锁");
try
{
resource.use(); // 使用资源
Thread.sleep(1000 * 1);
}
finally
{
System.out.println(clientName + " 释放读写锁");
readLock.release();
writeLock.release();
}
}
}
在这个类中我们首先请求了一个写锁,然后降级成读锁。执行业务处理,然后释放读写锁。修改 InterProcessMutexExample类中的 ExampleClientThatLocks 为 ExampleClientReadWriteLocks 然后运行示例。
3. 示例运行结果
运行结果控制台:
连接初始化完成!
Client 1 已得到写锁
Client 1 已得到读锁
Client 1 释放读写锁
......
Client 3 已得到写锁
Client 3 已得到读锁
Client 3 释放读写锁
OK!
此时查看Zookeeper数据节点如下:
4.信号量Shared Semaphore
一个计数的信号量类似JDK的Semaphore。JDK中Semaphore维护的一组许可(permits),而Cubator中称之为 租约(Lease)。
有两种方式可以决定semaphore的最大租约数。第一种方式是有用户给定的path决定。第二种方式使用SharedCountReader类。
如果不使用SharedCountReader,没有内部代码检查进程是否假定有10个租约而进程B假定有20个租约。 所以所有的实例必须使用相同的numberOfLeases值.
1.信号量实现类说明
主要类有:
- InterProcessSemaphoreV2 - 信号量实现类
- Lease - 租约(单个信号)
- SharedCountReader - 计数器,用于计算最大租约数量
这次调用acquire会返回一个租约对象。客户端必须在finally中close这些租约对象,否则这些租约会丢失掉。但是,如果客户端session由于某种原因比如crash丢掉,那么这些客户端持有的租约会自动close,这样其它客户端可以继续使用这些租约。
租约还可以通过下面的方式返还:
public void returnLease(Lease lease)
public void returnAll(Collection<Lease> leases)
注意一次你可以请求多个租约,如果Semaphore当前的租约不够,则请求线程会被阻塞。同时还提供了超时的重载方法。
public Lease acquire() throws Exception
public Collection<Lease> acquire(int qty) throws Exception
public Lease acquire(long time, TimeUnit unit) throws Exception
public Collection<Lease> acquire(int qty, long time, TimeUnit unit) throws Exception
2.编写示例程序
public class InterProcessSemaphoreExample
{
private static final int MAX_LEASE = 10;
private static final String PATH = "/examples/locks";
public static void main(String[] args) throws Exception
{
FakeLimitedResource resource = new FakeLimitedResource();
CuratorFramework client = CuratorFrameworkFactory.newClient("127.0.0.1:2181", new ExponentialBackoffRetry(1000, 3));
client.start();
InterProcessSemaphoreV2 semaphore = new InterProcessSemaphoreV2(client, PATH, MAX_LEASE);
Collection<Lease> leases = semaphore.acquire(5);
System.out.println("获取租约数量:" + leases.size());
Lease lease = semaphore.acquire();
System.out.println("获取单个租约");
resource.use();
Collection<Lease> leases2 = semaphore.acquire(5, 10, TimeUnit.SECONDS);
System.out.println("获取租约,如果为空则超时: " + leases2);
System.out.println("释放租约");
semaphore.returnLease(lease);
System.out.println("释放集合中的所有租约");
semaphore.returnAll(leases);
client.close();
System.out.println("OK!");
}
}
首先我们先获得了5个租约, 接着请求了一个租约,因为semaphore还有5个租约,所以请求可以满足,返回一个租约,还剩4个租约。
然后再请求一个租约,因为租约不够,阻塞到超时,还是没能满足,返回结果为null。
3.示例运行结果
运行结果控制台如下:
获取租约数量:5
获取单个租约
获取租约,如果为空则超时: null
释放租约
释放集合中的所有租约
OK!
此时查看Zookeeper数据节点如下:
注意: 上面所讲的4种锁都是公平锁(fair)。从ZooKeeper的角度看,每个客户端都按照请求的顺序获得锁。相当公平。
5.多锁对象 Multi Shared Lock
Multi Shared Lock是一个锁的容器。当调用acquire,所有的锁都会被acquire,如果请求失败,所有的锁都会被release。同样调用release时所有的锁都被release(失败被忽略)。 基本上,它就是组锁的代表,在它上面的请求释放操作都会传递给它包含的所有的锁。
1.主要类说明
主要涉及两个类:
- InterProcessMultiLock - 对所对象实现类
- InterProcessLock - 分布式锁接口类
它的构造函数需要包含的锁的集合,或者一组ZooKeeper的path。用法和Shared Lock相同。
public InterProcessMultiLock(CuratorFramework client, List<String> paths)
public InterProcessMultiLock(List<InterProcessLock> locks)
2.编写示例程序
public class InterProcessMultiLockExample
{
private static final String PATH1 = "/examples/locks1";
private static final String PATH2 = "/examples/locks2";
public static void main(String[] args) throws Exception
{
FakeLimitedResource resource = new FakeLimitedResource();
CuratorFramework client = CuratorFrameworkFactory.newClient("127.0.0.1:2181", new ExponentialBackoffRetry(1000, 3));
client.start();
InterProcessLock lock1 = new InterProcessMutex(client, PATH1); // 可重入锁
InterProcessLock lock2 = new InterProcessSemaphoreMutex(client, PATH2); // 不可重入锁
InterProcessMultiLock lock = new InterProcessMultiLock(Arrays.asList(lock1, lock2));
if (!lock.acquire(10, TimeUnit.SECONDS))
{
throw new IllegalStateException("不能获取多锁");
}
System.out.println("已获取多锁");
System.out.println("是否有第一个锁: " + lock1.isAcquiredInThisProcess());
System.out.println("是否有第二个锁: " + lock2.isAcquiredInThisProcess());
try
{
resource.use(); // 资源操作
}
finally
{
System.out.println("释放多个锁");
lock.release(); // 释放多锁
}
System.out.println("是否有第一个锁: " + lock1.isAcquiredInThisProcess());
System.out.println("是否有第二个锁: " + lock2.isAcquiredInThisProcess());
client.close();
System.out.println("OK!");
}
}
新建一个InterProcessMultiLock,包含一个重入锁和一个非重入锁。 调用acquire后可以看到线程同时拥有了这两个锁。 调用release看到这两个锁都被释放了。
注意: 再重申一遍,强烈推荐使用ConnectionStateListener监控连接的状态。
3.示例运行结果
运行结果控制台如下:
已获取多锁
是否有第一个锁: true
是否有第二个锁: true
释放多个锁
是否有第一个锁: false
是否有第二个锁: false
OK!
此时查看Zookeeper数据节点如下: